
May – June 2017 { Volume 38, No. 3 }

and Online!
Read it in Print

A Guide to High Availability and
an Approach to an Active/Active

Environment in the OSS World

PLUS
Women in NonStop

Not All Business
Continuity Solutions

Are Created Equal

24 May – June 2017

Stopping software on a server is an event that seriously disrupts
its operation: reconnection of ATMs, reconnection of network
resources, loss of in-flight transactions. As a consequence, point
A) above must be assured as a minimum. Point B) can be assured
by a mirrored architecture.

The software must also ensure:
• The transparency of the database, which could be located

on multiple nodes
• Central management of technical operations
For application synchronization, each occurrence of the

application has its own database, and all instances of the database
are synchronized by an application notification mechanism. For
the same reasons the software must assure point A) above. The
software must also ensure sending of notifications, a guaranteed
delivery mechanism, forced posting of notifications and technical
management of this message flow.

The SOA Contribution
Alongside various hardware architectures, a properly

architected SOA environment provides a number of robust and
proven technical approaches to provide software with ‘no single
point of failure’:

• The application can be configured to be highly redundant:

o Service-level redundancy uses multiple instances of a
given Service in an application process.

o Process-level redundancy uses multiple copies of a
given Process, each with one or more instances of a
given Service.

• The SOA’s modular design allows application processing to
be decoupled into functional modules, giving the following
advantages:

Each module is simpler and therefore more robust.

o The modules themselves may be replicated either within or
across processors to accommodate the throughput required.

• A High Availability solution supports redundancy at the
site level:

There’s no time for downtime, and it’s crucial that your
Nonstop hardware platform is at the ready 24/7. Lusis
Payments has years of experience with open systems and
brought our experience to Nonstop and OSS a few years

back. One of the key architecture features of an SOA Nonstop
environment relates to reliability and high availability, with the
agility and the scalability users need. A versatile design and
architecture provides the same high availability Nonstop users
are accustomed to for continuous online processing plus Active/
Active and Active/Passive environments. This allows payment
applications to be streamlined across multiple servers without
sacrificing speed or accuracy which creates a robust, reliable
platform with guaranteed delivery each and every time.

Some elements of high availability are provided by the
architecture of the hardware platform, such as fault tolerance,
clustering, and remote backup. Lusis has experience with these
different architectures and their respective pros and cons. We
have integrated several functions to minimize any constraints
introduced by these disparate architectures.

Fault Tolerance
In a fault tolerant system, there are minimum requirements. A)

The software must not cause an application to stop either during
normal processing or when making frequent, everyday changes
to the system, such as adding an ATM, a network interface, a
financial institution, or even for version changes or bug fixes.
B) The software must make its own provisions through its
configuration or architecture for those hardware elements that are
not fault tolerant, such as older communication cards.

Cluster with a single Application Database and
Application Synchronization

In the case of high availability clusters, the hardware is
replicated. The application resides on each server and is either
permanently active or automatically activated if the primary
server fails. The database is seen as one entity by the application.

Ki Roth >> Business Development >> Lusis Payments

A Guide to High
Availability and an

Approach to an
Active/Active Environment

in the OSS World

25www.connect-community.org

of the servers. These components are responsible for keeping
updated a set of data (tables) on both payment servers. To do
this, both payment servers contain two secured communication
channels (including SAF capabilities) responsible for exchanging
activity advices and status advices.

This additional capability provides the opportunity to
streamline current payments platforms as well as reducing
the overall TCO for running the authorization system. A SOA
based payment platform can be unique by providing both an
authorization system and a high availability capability integrated
within the same architecture. This will assist both in reducing the
ongoing costs and simplifying the management of upgrades as a
result of data evolutions.

Inter-Data Center High Availability
In addition to providing the capability for two systems

to replicate data between each other in one data center, this
mechanism can also be used to replicate data between different
systems located in different data centers, as described in the
diagram below.

The above diagram shows two local systems replicating data
between each other and replicating data to a remote cold/warm
standby DR server in another datacenter. The two production
systems described could be in different datacenters, providing
ultimate flexibility in deploying the system to customers’ specific
requirements

The previous sections have described the flexibility and
configurability that can be designed into an SOA open system
application irrespective of the capabilities or configuration of the
hardware platform on which it is deployed: on a single node, in a
single datacenter or in multiple datacenters.

Implementation of the High Availability components can also
provide further flexibility and automation. For example, one option
would be to deploy a 3rd cold standby datacenter if required.

Therefore, given the capabilities described above, a properly
designed architecture/modules, plus the deployment of Nonstop
high availability hardware will provide both the 99.999%
availability expected of the system and the required capacity for
increasing transaction volumes.

Ultra-High Availability
Ultra-High availability is provided by:
• The capacity to do multi-instances services
• The capacity to implement application services on several

systems with the same level of key information
• The capacity to easily provide Active/Active systems.
• The capacity to change configurations without stopping

the application

o Adding processes

o A copy of each transaction can be sent, in the form
of a notification message with guaranteed delivery, to
the remote site in either an Active/Active or an Active/
Passive configuration.

• The technical management of the environment
incorporates centralized functions for controlling the
entire technical environment:

o Automatic monitoring of modules

o Restart commands

o Dynamic warm-boot commands

o Stop and start commands by process, by service or
by a group of services, to ensure changes can be made
without stopping the entire application.

Intra-Application High Availability
The diagram below presents the inherent software high

availability provided in an SOA architecture, as described above,
by configuring multiple processes and services and employing an
alternative routing capability to ensure maximum opportunity of
guaranteeing delivery of a message.

1. System resource becomes unavailable and therefore uses
a backup route

2. Routing to the element responsible for a pool of software
resources

3. Routing to the backup pool B after an incident in Pool A
4. Sending a notification advice with guaranteed delivery

Store and Forward (SAF)
5. SAF the advice then retries if there is a delivery failure

Inter-Application Ultra High Availability
Inter-Application Ultra High Availability can be provided

using data replication tools. It can also be accomplished thru
the application’s own specialized High Availability components
integrated within the payments platform to provide an
alternative Active-Active solution for two servers, as shown in
the diagram below.

HA SND sends advices to the remote server. HA RCV receives
the advices from the remote server. For an Active/Active
environment, there is one copy of HA RCV and HA SND on each

26 May – June 2017

Authorization activity, terminal contexts (ATMs and POS devices),
merchant, and customer data are synchronized through real-time
TANGO messages. For instance, any given terminal can connect
to any of the Application servers to provide functionalities to
customers with 24/7 availability.

The following schema shows a TANGO fully synchronized
DUAL server including an interaction with a remote TANGO batch
server that provides safe access to application real-time history at
no risk to the real-time transaction flows. This remote server can
also host batch extraction activity.

Active redundancy mode
Service is instantiated with a unique name. Several processes

host this unique service in parallel. They run on different CPUs
and process transactions in load balancing mode, as routing
is based on service name. The Hypervisor launches several
(minimum of 2) instances of a process at start-up - all are active.
The Dispatcher sends transactions over running processes via
round-robin with a priority on less loaded processes in the queue.
Sizing ensures that if one CPU fails, all the remaining processes
can handle the transaction flow.

CPU backup mode
The Service is initiated with a unique name. A Unique process

is first launched at start time on the first CPU and processes
transaction as long as it is present. If a CPU fails, the hypervisor
launches the back-up process – configured to run on another CPU.
This mode is used when a constraint (external resource, sequence,
…) makes use of ‘active redundancy’ mode impossible. Initial
process is launched on one CPU and processes all transactions.

Vertical scalability
Adding CPU and memory in an existing system is a classic way

of improving Server capacity without touching the application.
All modern Operating Systems can balance process execution on
numerous CPUs or CPU cores. Nonetheless, certain OS’s may have
a very efficient balancing algorithm at the process level but poor
balancing at the process threads level.

o Update services parameters.
A service runs as a thread inside an application process. For

each process, the definition of each service contains a parameter
defining the number of instances of the service inside the process.
Each instance manages its own queue of events (among which
are application requests, responses and notifications). To benefit
from multi-cores and multi-CPU architectures it is necessary to
instantiate more than 1 thread to run per service. Distribution of
the message load is the responsibility of a dispatcher process,
which maintains counters for all registered service instances.

High availability components oversee maintaining an up to
date set of data on both payment servers to allow each server to
process data flows without any restrictions:

• Authorization data
• Terminal contexts
• Dynamic network and terminal keys
This can be realized without any third-party replication tool.

As it is using only messaging features, servers can use different
operating systems or even different data models (and databases).

Each server contains at least 2 communication channels in
charge of exchanging activity advices (from ATM management,
network protocols management and authorization management)
and status advices (from ATM management) from one system to
the other:

• HASND (High Availability SeNDer process): In charge of
sending local system activity advices to remote system.

• HARCV (High Availability ReCeiVer process): In charge
of processing remote system activity advices to maintain
local database up to date

Both systems are completely symmetrical
The application uses the equivalent of “0120”, “0320” and

“0820” messages to notify data from one system to another (and
vice versa).

Key data elements are:
• Authorization management

o Hot cards

o Authorisation activity

o False PIN

o True PIN after False
• ATM management

o Status advices

o Terminal contexts (counters….)
• Network management

o Encrypted keys
Time of updating the distant system needs to be within 50

milliseconds. Configurations are synchronized via scripts.

A Real-Life Example
To demonstrate how the above theory is implemented let’s take

a look at the TANGO architecture from Lusis Payments, although
there may be similar solutions available on the market.

For Active/Active
High Availability mechanisms and Interoperability allow

simple Active/Active systems integration. RTE package (Remote
TANGO Environment) contains the Inter-TANGO process sets.

27www.connect-community.org

Cooperating with Third Party Applications
Interoperability with third party applications can be managed

through integration of APIs or message interfaces when available.
In the latter case, this reduces the introduction of a new interface
module:

• Providing Perl and Python libraries and C, C++, XML and
Java APIs

• Interacting with Java applications by building hybrid
Java objects

For example, the high availability solution would interface with
the customer database in the Bank’s back-end using Web-Service
to execute VISA Address Verification Service; or a bank API is
used to connect to an external Fraud detection application. The
following schema shows how external third party applications
can integrate into the services architecture of a high availability
solution.

Conclusion

There are many different methods of High Availability and
whether to go with an Active/Active environment is a difficult
decision to make. At the end of the day each organization must
weigh the different factors, some of which are risk assessment,
value, resources, time and intrinsic visibility to determine what is
best for their situation and ultimately their customer base.

Horizontal Scalability
New Hardware is now promoting distributed CPU power inside

Blade server architectures and high performance interconnection
between servers. A solution with high modularity and process
organization allows full benefits for such architectures and can
seamlessly replicate services on different hardware, either using
a centralized Dispatcher registration for services spread over
different hardware, or using distributed sub-systems dialog using
inter- product functions.

Functional Scalability
All functions being executed in isolated services, the

repartition of services on the Hardware and the number of
instances that will run the service are highly configurable and
can grow by simple configuration changes.

Scalability Example on NonStop
The following schema illustrates the combination of all types of

scalability that can be achieved on an HP NonStop with processes
spread over logical CPUs executing different sets of services.

Ki Roth has been with Lusis Payments for over 3 years in a Business
Development role. One of his main objectives has been to build
awareness for the TANGO solution in the financial sector. Ki has worked
in the NonStop space since 1997 when he began working for a large
payments software company based in Omaha NE. Over the years, each
of his employers have brought solutions that run on the HP NonStop
platform. The value that NonStop brings to the market, make it easy for
Ki to promote applications that build on the NonStop fundamentals of
reliability, stability and high availability. Today TANGO runs on the OSS
layer of the platform and uses the SQL/MX database when performing
transactional processing.

