
A Comparison of Machine Learning Techniques for Credit Card

Fraud Detection

Lusis

April 20, 2017

1 Introduction

Fraud is a billion-dollar business and it is increasing every year. The PwC global economic crime survey of
2016 suggests that more than one in three (36%) of organizations experienced economic crime [1]. Those
results reveal clearly that, despite the millions of dollars being spent to tackle it, economic crime remains a
persistent and serious issue.

In the last years, many studies have been performed using data mining to investigate new techniques to
detect fraud on the basis of the fraudulent paths [2] and different algorithms have been developed to block
fraudulent transactions before they are filled. However, new fraud behaviors born every time, above all in
the Internet world, and for this reason we need a continuous improvement of those algorithms.

In the next sections, we use a simulated sample of ∼ 200k credit card transactions to test two machine
learning algorithms for fraud detection: Logistic Regression (LR) and Random Forest (RF) [3]. We also
compare our results with a previous study of Supelec students that used a Support Vector Machine (SVM)
algorithm [4] for the same aim.

2 The Data

In this study, for legals reasons, are not used real banking transactions but data simulated using R. The data
contain the 5% of fraudulent transactions. Anyway, simulation is a good reproduction of the reality, basing
on reals cases and interviews of specialized people in the fraud sector.

2.1 Initial Data

We use a set of ∼ 200k transactions (exactly 193679) realized with 5000 different cards. For each transaction,
the recorded quantities are:

• datetime: the date and the time of the transaction in a format: yyyy −mm− dd HH : MM : SS;

• ref : unique ID for transaction;

• card : Number of credit card used for transaction. In total we have 5000 cards.

• localamount : amount of transaction in the local currency;

• currency : code ISO of the currency of the country in which transaction has been realized;

• terminal : number of the terminal of the transaction;

• type: type of the terminal (ATM, POS,...);

• mcc: type of merchant;

• country : country in which transaction has been realized;

1

• riskmerchant : boolean variable indicating if the place of the transaction is flagged as high-risk fraud
country;

• riskcountry : boolean variable indicating if the country of the transaction is flagged as high-risk fraud
country;

• riskmcc: boolean variable indicating if the type of merchant of the transaction is flagged as high-risk
fraud country;

• travel : boolean variable indicating if the client owner of the card is flagged as traveling;

• rtfraud : boolean variable indicating if the transaction is fraudulent and it is detectable as fraudulent
when it has been realized. When it is flagged to 1, the card is blocked and all the following transactions
are forbidden.

• fraud : boolean variable indicating if the transaction is fraudulent (detection a posteriori). It is flagged
after a transaction is flagged as fraudulent (rtfraud = 1), and it goes back to all the last transaction
with a fraudulent behavior. Fraud is the variable to predict with the machine learning algorithm.

Listing 1: Initial Data

datet ime r e f card localamount currency te rmina l type mcc
1 2016−01−01 01 : 1 3 : 3 1 52524 2168 160 GBP 13753 ATM 0
2 2016−01−01 01 : 2 6 : 4 5 102718 305 110 SEK 10646 ATM 0
3 2016−01−01 01 : 5 0 : 1 9 11113 1518 60 EUR 7801 ATM 0
4 2016−01−01 02 : 1 5 : 0 0 83082 4573 90 DKK 7385 ATM 0
5 2016−01−01 02 : 3 3 : 1 6 103508 1864 70 CAD 13206 ATM 0
6 2016−01−01 02 : 4 1 : 3 4 15489 2746 110 DKK 8335 ATM 0

country r i skmerchant r i s k count ry r iskmcc t r a v e l f raud r t f r a u d
1 United Kingdom 0 1 0 0 0 0
2 Sweden 0 0 0 0 0 0
3 France 0 1 0 0 0 0
4 Denmark 0 0 0 0 0 0
5 Canada 0 1 0 0 0 0
6 Denmark 0 0 0 0 0 0

2.2 Derivate Data

The initial attributes are not really useful for the machine learning, because they are not discriminating
factors for the fraud detection. For this reason, starting from them, we compute new derivate variables
taking in account the history of each credit card. For each transaction, the new quantities are:

• USDamount : the localamount converted to USD;

• Diff time trans: time difference in minutes between two following transactions;

• NFreq daily : total number of transactions in a day till this transaction;

• NCountry daily : total number of Country in which transactions are realized in a day till this transac-
tion;

• tot daily amount : total amount in USD of all transactions in the same day till this transaction;

• NFreq weekly : average of number of transactions for day over 7 days before this transaction. We
calculate the total number of transactions with a credit card during the past 7 days prior to transaction
and dividet it by 7.

• NCountry weekly : total number of Country in which transactions are realized over 7 days before this
transaction;

2

• tot weekly amount : total amount of transactions over 7 days before this transaction divided by 7 to
compute a daily average;

• NFreq monthly : average of number of transactions for day over 30 days before this transaction. We
calculate the total number of transactions with a credit card during the past 30 days prior to transaction
and dividet it by 30.

• NCountry monthly : total number of Country in which transactions are realized over 30 days before
this transaction;

• tot monthly amount : total amount of transactions over 30 days before this transaction divided by 7 to
compute a daily average;

• day night : flag to identify if transaction has been realized during the night (day night = 1) after 22
PM and before 4 AM or during the day (day night = 0);

• buss weekend : flag to identify if transaction has been realized during the weekend (buss weekend = 1)
or during a business day (buss weekend = 0);

• fraud : as the initial data.

Listing 2: Derivate Data

USDamount D i f f time t rans NFreq d a i l y NCountry d a i l y to t d a i l y amount
2 162.305 4258.900 1 1 162.305
3 199.760 2694.250 1 1 199.760
4 237.215 1710.383 1 1 237.215
5 49 .940 6842.683 1 1 49 .940
6 137.335 6760.083 1 1 137.335
7 112.365 7969.650 1 1 112.365

NFreq weekly NCountry weekly to t weekly amount NFreq monthly
2 0.0000000 0 0.00000 0
3 0.0000000 0 0.00000 0
4 0.0000000 0 0.00000 0
5 0.4285714 1 69.55929 0
6 0.2857143 1 26.75357 0
7 0.2857143 1 35.67143 0

NCountry monthly to t monthly amount day night buss weekend fraud
2 0 0 1 0 0
3 0 0 0 0 0
4 0 0 1 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 1 1 0

For weekly and monthly values, if a transaction has not enough previous days to quantify the attribute,
we chose to set it to 0.0.

Since this moment, we will refer to the derivate data for our study.

3 Exploring Data

3.1 Zero covariates variables

Before to apply the machine learning algorithms, we explore our data. First af all, we check if there is any
“zero covariates” variable. They are variables with low variability and we remove them because they will
not be good predictors. In our dataset NCountry daily and NCountry weekly are “zero covariates” variables
so, we neglect them from our analysis. For coherence, we chose to remove NCountry monthly too.

3

3.2 Relations between variables

We explore our data to have a first idea about correlations between the variables. We chose to plot US-
Damount versus Diff time trans, NFreq daily versus tot daily amount, NFreq weekly versus tot weekly amount,
NFreq monthly versus tot monthly amount. Different colors are associated to a different fraud flag (pink =0,
blue=1)

Looking at the plots, we can see that, for example, fraud transactions happened in a really short time.
Furthermore, higher frequency of transaction are in general associated to fraudulent transactions for all
intervals of reference (daily, weekly and monthly).

3.3 Summary properties

Before to apply our machine learning algorithms, is very useful to take a look at the summary properties of
our data:

Listing 3: Summary Properties

USDamount D i f f time t rans NFreq d a i l y NCountry d a i l y
Min . : 2 .25 Min . : 2 .05 Min . : 1 .000 Min . : 1
1 s t Qu . : 30 .00 1 s t Qu . : 2809.85 1 s t Qu . : 1 .000 1 s t Qu . : 1
Median : 74 .86 Median : 5071.22 Median : 1 .000 Median : 1
Mean : 82 .84 Mean : 5696.37 Mean : 1 .214 Mean : 1

4

3 rd Qu. : 1 2 0 . 0 0 3 rd Qu . : 7964.14 3 rd Qu . : 1 .000 3 rd Qu . : 1
Max. : 4 9 9 . 4 0 Max. : 41800 . 37 Max. : 1 2 . 0 0 0 Max. : 1
to t d a i l y amount NFreq weekly NCountry weekly to t weekly amount
Min . : 2 .25 Min . : 0 . 0 0 0 0 Min . : 0 . 0 0 0 0 Min . : 0 .000
1 s t Qu . : 32 .08 1 s t Qu. : 0 . 2 8 5 7 1 s t Qu. : 1 . 0 0 0 0 1 s t Qu . : 7 .811
Median : 76 .24 Median : 0 . 2 8 5 7 Median : 1 . 0 0 0 0 Median : 26 .754
Mean : 100 .21 Mean : 0 . 3 6 7 9 Mean : 0 . 9 6 5 1 Mean : 30 .315
3 rd Qu . : 128 .34 3 rd Qu. : 0 . 4 2 8 6 3 rd Qu. : 1 . 0 0 0 0 3 rd Qu . : 42 .857
Max. : 1 797 . 84 Max. : 2 . 1 4 2 9 Max. : 1 . 0 0 0 0 Max. : 30 8 . 55 8
NFreq monthly NCountry monthly to t monthly amount day night
Min . : 0 . 0 0 0 0 Min . : 0 . 0 0 0 0 Min . : 0 .000 Min . : 0 . 0 0 0 0
1 s t Qu. : 0 . 2 0 0 0 1 s t Qu. : 1 . 0 0 0 0 1 s t Qu . : 3 .075 1 s t Qu. : 0 . 0 0 0 0
Median : 0 . 2 3 3 3 Median : 1 . 0 0 0 0 Median : 1 9 . 9 7 6 Median : 0 . 0 0 0 0
Mean : 0 . 2 2 1 7 Mean : 0 . 8 1 8 5 Mean : 1 8 . 2 3 8 Mean : 0 . 2 5 8 2
3 rd Qu. : 0 . 3 0 0 0 3 rd Qu. : 1 . 0 0 0 0 3 rd Qu. : 2 9 . 1 3 2 3 rd Qu. : 1 . 0 0 0 0
Max. : 0 . 7 6 6 7 Max. : 1 . 0 0 0 0 Max. : 9 6 . 5 5 1 Max. : 1 . 0 0 0 0

buss weekend fraud
Min . : 0 . 0 0 0 0 0:178938
1 s t Qu. : 0 . 0 0 0 0 1 : 9741
Median : 0 . 0 0 0 0
Mean : 0 . 2 8 5 3
3 rd Qu. : 1 . 0 0 0 0
Max. : 1 . 0 0 0 0

We can see that in general our variables cover different and, often, very large ranges. In this case, above
all to perform a logistic regression, it can be useful to preprocess the data and apply transformation to make
them homogeneous. We will see in the next sections how to treat this issue.

Finally we remove transactions having NA value: in general they come from the first element of Diff time trans.

4 Experimental Setup

4.1 Training and Data set

We split our starting sample in training and test data. We use the R function createDataPartition of
caret package [5], using a probability of 0.7. The training data contains 132076 transactions. The set data
contains 56603 transactions. Both subsamples have ∼ 5% of fraud transactions.

4.2 PCA Preprocess

When data have a standard deviation too much larger than mean, it could be useful to apply a transformation
to reduce it. Furthermore, when there are many variables, we can built a new set of uncorrelated quantities
that explain as better as possible the variance. This is can be done, applying a Principal Component
Analysis (PCA) [3]. The result of this analysis is that the number of principal components is less than or
equal to the smaller of the number of original variables or the number of observations. This transformation is
defined in such a way that the first principal component has the largest possible variance (that is, accounts for
as much of the variability in the data as possible), and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to the preceding components. The resulting
vectors are an uncorrelated orthogonal basis set.

This transformation is applied to the training set. The same parameters of transformations computed
over training set, are then applied to the test set.

We chose to apply to our data a logarithmic transformation and a PCA analysis with a number of
component = 10 equal to the starting ones. We use the function preProcess of caret pakcage. In the
following plot, we show the relations betweens the first 8 components. Different colors are still associated to
a different fraud flag (pink =0, blue=1):

5

We can see, above all in the first plot, a good distinction between fraud and no fraud transactions.
We will apply the machine learning algorithms to both data with and without PCA, to check the impact

of preprocessing on the results.

5 Machine learning algorithms and Results

5.1 Logistic Regression

The first machine learning algorithm we want to apply to our data is the logistic regression. In statistics,
logistic regression, or logit regression, or logit model is a regression model where the dependent variable
(DV) is categorical. The typical use of this model is predicting y given a set of predictors x. The predictors
can be continuous, categorical or a mix of both.

The categorical variable y, in general, can assume different values. In the simplest case scenario y is
binary meaning that it can assume either the value 1 or 0.

For a detailed mathematical description of this model, we refer to the section 4.4 of [3].
In R, to perform a logistic regression we use the glm function.

5.2 Random Forest

The second machine learning to test is the Random Forest.

6

Random Forests are one way to improve the performance of decision trees. The algorithm starts by
building out trees similar to the way a normal decision tree algorithm works. However, every time a split has
to made, it uses only a small random subset of features to make the split instead of the full set of features
(usually

√
p, where p is the number of predictors). It builds multiple trees using the same process, and

then takes the average of all the trees to arrive at the final model. This works by reducing the amount of
correlation between trees, and thus helping reduce the variance of the final tree.

For a detailed mathematical description of this model, we refer to the chapter 15 of [3].
In R, to apply Random Forest we use the train function with method = ’rf’, using a K-fold cross

validation with k = 3 and k = 6 (for details about cross validation, see section 7.10 of [3]).

5.3 Results

We apply the Logistic Regression and Random Forest (with K=3 and K=6) to both training dataset with
and without PCA Processing. After building the model, we apply it to the respective test data set and we
compute the Confusion Matrix, containing starting from up-left cell in clockwise the values: True Positive
TP, false Positive FP,True Negative TN and and False Negative FN, and the Performance Parameters like:

• Accuracy: (TP+TN)/(TP+FP+TN+FN)

• Sensitivity: TP/(TP+FN)

• Specificity: TN / (FN+TN)

• Positive Prediction value: TP/(TP+FP)

• Negative Prediction Value: TN/(FN+TN).

We show below the Confusion Matrix for our 6 models. We also make comparison with the results
obtained by the Supelec students that used a Support Vector Machine algorithm on the same data of us to
detect fraud. We have to specify that, even if the starting data are the same, the procedure executed by
Supelec is different from us for the computation of the derivate variables and the preprocessing. In particular,
their method brings to use a smaller final sample of data where fraud transactions are sim 30% of the total
sample.

7

Table 1: Confusion Matrix

PPPPPPPPPred
Ref

0 1

0 55513 158
1 205 2717

(a) LR without PCA

PPPPPPPPPred
Ref

0 1

0 53587 94
1 106 2816
(b) LR with PCA

PPPPPPPPPred
Ref

0 1

0 53605 76
1 52 2870

(c) RF without PCA and K=3

PPPPPPPPPred
Ref

0 1

0 53603 78
1 70 2852

(d) RF with PCA and K=3

PPPPPPPPPred
Ref

0 1

0 53604 77
1 57 2865

(e) RF without PCA and K=6

PPPPPPPPPred
Ref

0 1

0 53606 75
1 68 2854

(f) RF with PCA and K=6

PPPPPPPPPred
Ref

0 1

0 7353 198
1 81 3191

(g) SVM Supelec Study

We summarize below the Performance Parameters of the different algorithms:

Table 2: Performance Parameters sorted by Accuracy

Algorithm Accuracy Sensitivity Specificity Pos Pred Value Neg Pred Value
RF without PCA and K=3 0.9977 0.9990 0.9742 0.9986 0.9822
RF without PCA and K=6 0.9976 0.9989 0.9739 0.9986 0.9805
RF with PCA and K=6 0.9975 0.9987 0.9744 0.9986 0.9767
RF with PCA and K=3 0.9974 0.9987 0.9734 0.9985 0.9760
LR with PCA 0.9965 0.9980 0.9677 0.9982 0.9637
LR without PCA 0.9934 0.9962 0.9418 0.9969 0.9298
SVM Supelec Study 0.9742 0.9891 0.9416 0.9738 0.9752

In the next section we discuss our results.

8

6 Discussion and Conclusion

Given the Confusion Matrix and Performance Parameters, we can investigate which is the best Algorithm
to predict fraud for our data.

First of all we focus on Logistic regression without PCA. We can see that Accuracy of 0.9934 and all
others parameters show well that this algorithm is better than Support Vector Machine that has an accuracy
of 0.9742. Furthermore, we notice that to apply a Preprocessing to our data still improve the results, reaching
an accuracy of 0.9965.

However, the Random Forest algorithm has a better performance than both SVM and LR. In general,
we see that we do not need to Preprocess the data to apply Random Forest: indeed the RF algorithm does
not really suffer from high number of predictors since it only takes a random subset of them to build each
tree.

We can also notice that the number of fold for cross validation it does not really affect results: this
method in fact, has in general more importance when the sample is small.

In conclusion, after a comparison of three different algorithms, Random Forest, Logistic Regression and
Support Vector Machine, in different conditions (with or without Principal Component Analysis, K for cross
validation equal to 3 or 6), for a total of 7 machine learning procedures, we can affirm that for our data for
the detection of fraud transactions the Random Forest without PCA and K = 3 has the best performance
with an accuracy of 0.9977, sensitivity of 0.9990 and specificity of 0.9742.

We must remind that the algorithms are applied to simulated data and so it could be useful to evaluate
performance on real data. Furthermore, it’s very significant the number and the type of derivate variables
used for machine learning: increasing it and/or choosing different attributes could improve results. However
a larger number of variables can affect critically the time of execution of the scripts. In our case, a full test
(computation of derivate variables, PCA and building of model) for a single algorithm takes more than 3
hours, so also an optimization of the functions could help to gain computation time and make faster test
over larger sample with more predictors.

References

[1] PricewaterhouseCoopers LLP (2016). ”2016 Global Economic Crime Survey”. Retrieved March 6, 2017.

[2] Siddhartha Bhattacharyya, Sanjeev Jha, Kurian Tharakunnel, and J. Christopher Westland. Data min-
ing for credit card fraud: A comparative study. Decision Support Systems, 50(3):602-613, 2011. On
quantitative methods for detection of financial fraud.

[3] Hastie, Trevor, Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York: Springer, 2001.

[4] Hlne Boudon, Thomas Fromont, Jean-Sbastien Renaud. Rapport CEI: Dtection de fraudes bancaires,
2016

[5] Max Kuhn, R Package caret: https://cran.r-project.org/web/packages/caret/caret.pdf

9

